8 A RMS, 70 A Peak
Glass Passivated Wafer
400 V to 800 V Off-State Voltage
Max \(I_{\text{GT}} \) of 50 mA (Quadrants 1 - 3)

absolute maximum ratings over operating case temperature (unless otherwise noted)

<table>
<thead>
<tr>
<th>RATING</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak off-state voltage (see Note 1)</td>
<td>(V_{\text{DRM}})</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note 2)</td>
<td>(I_{\text{T}(\text{RMS})})</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>Peak on-state surge current full-sine-wave (see Note 3)</td>
<td>(I_{\text{SM}})</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>Peak on-state surge current half-sine-wave (see Note 4)</td>
<td>(I_{\text{SM}})</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>Peak gate current</td>
<td>(I_{\text{GM}})</td>
<td>±1</td>
<td>A</td>
</tr>
<tr>
<td>Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤ 200 μs)</td>
<td>(P_{\text{GM}})</td>
<td>2.2</td>
<td>W</td>
</tr>
<tr>
<td>Average gate power dissipation at (or below) 85°C case temperature (see Note 5)</td>
<td>(P_{\text{G(AV)}})</td>
<td>0.9</td>
<td>W</td>
</tr>
<tr>
<td>Operating case temperature range</td>
<td>(T_{\text{C}})</td>
<td>-40 to +110</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>(T_{\text{STG}})</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature 1.6 mm from case for 10 seconds</td>
<td>(T_{\text{L}})</td>
<td>230</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 320 mA/°C.
3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
4. This value applies for one 50-Hz half-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
5. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(I_{\text{D}}) = rated (V_{\text{DRM}})</th>
<th>(I_{\text{G}} = 0)</th>
<th>(T_{\text{C}} = 110°C)</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{DRM}}) Repetitive peak off-state current</td>
<td>(V_{\text{supply}} = +12 \text{ V})</td>
<td>(R_L = 10 \text{ Ω})</td>
<td>(t_{\text{pg}} > 20 \mu\text{s})</td>
<td>2</td>
<td>50</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{GT}}) Peak gate trigger current</td>
<td>(V_{\text{supply}} = +12 \text{ V})</td>
<td>(R_L = 10 \text{ Ω})</td>
<td>(t_{\text{pg}} > 20 \mu\text{s})</td>
<td>-12</td>
<td>-50</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{GT}}) Peak gate trigger voltage</td>
<td>(V_{\text{supply}} = +12 \text{ V})</td>
<td>(R_L = 10 \text{ Ω})</td>
<td>(t_{\text{pg}} > 20 \mu\text{s})</td>
<td>0.7</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\dagger \) All voltages are with respect to Main Terminal 1.
electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TM} Peak on-state voltage</td>
<td>$I_{TM} = \pm 12\ A$ $I_G = 50\ mA$ (see Note 6)</td>
<td>± 1.6</td>
<td>± 2.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_H Holding current</td>
<td>$V_{supply} = +12\ V$</td>
<td>$I_G = 0$</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{supply} = -12\ V$</td>
<td>$I_G = 0$</td>
<td>Init $I_{TM} = 100\ mA$</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_L Latching current</td>
<td>$V_{supply} = +12\ V$</td>
<td>$I_G = 0$</td>
<td>Init $I_{TM} = -100\ mA$</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{supply} = -12\ V$</td>
<td>(see Note 7)</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>dv/dt Critical rate of rise of off-state voltage</td>
<td>$V_{DRM} = \text{Rated}$ $I_G = 0$ $T_C = 110^\circ C$</td>
<td></td>
<td>± 100</td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>$dv/dt(c)$ Critical rise of commutation voltage</td>
<td>$V_{DRM} = \text{Rated}$ $I_{TRM} = \pm 12\ A$ $T_C = 85^\circ C$</td>
<td></td>
<td>± 5</td>
<td>V/µs</td>
<td></td>
</tr>
</tbody>
</table>

† All voltages are with respect to Main Terminal 1.

NOTES:
6. This parameter must be measured using pulse techniques, $t_p = \leq 1\ ms$, duty cycle $\leq 2\%$. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.
7. The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:
 $R_G = 100\ \Omega$, $t_{p(g)} = 20\ \mu s$, $t_{r} = \leq 15\ ns$, $f = 1\ kHz$.

thermal characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUC} Junction to case thermal resistance</td>
<td></td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUA} Junction to free air thermal resistance</td>
<td></td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Typical Characteristics

Gate Trigger Current vs Case Temperature

Gate Trigger Voltage vs Case Temperature
TYPICAL CHARACTERISTICS

HOLDING CURRENT

VS

CASE TEMPERATURE

![Graph showing Holding Current vs Case Temperature](image)

- I_H - Holding Current - mA
- T_C - Case Temperature - °C
- $V_{AA} = \pm 12$ V
- $I_g = 0$
- Initiating $I_{th} = 100$ mA

Figure 3.

GATE FORWARD VOLTAGE

VS

GATE FORWARD CURRENT

![Graph showing Gate Forward Voltage vs Gate Forward Current](image)

- V_{GF} - Gate Forward Voltage - V
- I_{GF} - Gate Forward Current - A
- $I_g = 0$
- $T_C = 25$ °C
- Quadrant 1

Figure 4.

LATCHING CURRENT

VS

CASE TEMPERATURE

![Graph showing Latching Current vs Case Temperature](image)

- I_L - Latching Current - mA
- T_C - Case Temperature - °C
- V_{supply}, I_{GTM}
- $V_{AA} = \pm 12$ V

Figure 5.

SURGE ON-STATE CURRENT

VS

CYCLES OF CURRENT DURATION

![Graph showing Surge On-State Current vs Cycles of Current Duration](image)

- I_{tot} - Peak Full-Sine-Wave Current - A
- No Prior Device Conduction
- Gate Control Guaranteed

Figure 6.
TYPICAL CHARACTERISTICS

MAX RMS ON-STATE CURRENT

\[I_{\text{RMS}} \text{ vs } T_c \]

CASE TEMPERATURE

Figure 7.

MAX AVERAGE POWER DISSIPATED

\[P_{\text{(av)}} \text{ vs } I_{\text{F(RMS)}} \]

RMS ON-STATE CURRENT

Figure 8.

PARAMETER MEASUREMENT INFORMATION

NOTE A: The gate-current pulse is furnished by a trigger circuit which presents essentially an open circuit between pulses. The pulse is timed so that the off-state-voltage duration is approximately 800 µs.

Figure 9.

PMC2AA
MECHANICAL DATA

TO-220
3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

ALL LINEAR DIMENSIONS IN MILLIMETERS

NOTES:
A. The centre pin is in electrical contact with the mounting tab.
B. Mounting tab corner profile according to package version.
C. Typical fixing hole centre stand off height according to package version.
Version 1, 18.0 mm. Version 2, 17.6 mm.
IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited